Snippet Name: BCP_CSV_Quoted_Import
Tags:
Created Date: 2025-06-16 13:12:48
Last Modified Date: 2025-05-31 10:32:16
Dependencies:
DBA Notes:
Sample Output:
Title: BCP CSV Quoted Import
Author: user
without a format file, how can i bcp in or bulk insert into sql server a quoted delimiter csv found at C:\_Code\LinkedInData\USAEmails.csv
Author: ChatGPT
To import a **quoted, delimited CSV file** (for example, fields enclosed in `"..."` and separated by commas) into SQL Server **using `bcp` or `BULK INSERT` without a format file**, you can use the following approach ??? but there???s an important caveat:
SQL Server???s `BULK INSERT` and `bcp` **do not natively handle quoted delimiters or escaped quotes** ??? they treat the delimiter literally, even inside quotes.
That means if your CSV has:
```
"FirstName","LastName","Email"
"John","Doe","john.doe@example.com"
"Jane","Smith","jane.smith@example.com"
```
and you run `BULK INSERT` or `bcp` **without preprocessing**, it will break at the commas **inside the quotes**, resulting in data misalignment.
### ??? Option 1: Preprocess the file (recommended)
Use PowerShell, Python, or a tool like `csvkit` to preprocess the file, **removing quotes or replacing commas inside quotes with another character**, then run `BULK INSERT`.
Example PowerShell one-liner to strip quotes:
```powershell
Get-Content C:\_Code\LinkedInData\USAEmails.csv | ForEach-Object { $_ -replace '"', '' } | Set-Content C:\_Code\LinkedInData\USAEmails_clean.csv
```
Then run:
```sql
BULK INSERT [dbo].[YourTargetTable]
FROM 'C:\_Code\LinkedInData\USAEmails_clean.csv'
WITH (
FIELDTERMINATOR = ',',
ROWTERMINATOR = '\n',
FIRSTROW = 2 -- skip header row
);
```
---
### ??? Option 2: Use SSIS or OPENROWSET (if BULK INSERT fails)
- **SSIS (SQL Server Integration Services)**: Built-in CSV handling with text qualifiers (`"`)
- **`OPENROWSET` with OLEDB / ACE drivers**: Can read CSV with quoted delimiters
Example:
```sql
SELECT *
FROM OPENROWSET('Microsoft.ACE.OLEDB.12.0',
'Text;Database=C:\_Code\LinkedInData\;HDR=YES;FMT=Delimited',
'SELECT * FROM USAEmails.csv');
```
Make sure you have the **Access Database Engine** installed for `ACE.OLEDB.12.0`.
---
### ??? Option 3: Use a staging table with all columns as `NVARCHAR`
1. Create a **staging table** with all columns as `NVARCHAR(MAX)` or `VARCHAR(MAX)`:
```sql
CREATE TABLE dbo.USAEmails_Staging (
Col1 NVARCHAR(MAX),
Col2 NVARCHAR(MAX),
Col3 NVARCHAR(MAX)
);
```
2. Import **raw CSV data**:
```sql
BULK INSERT dbo.USAEmails_Staging
FROM 'C:\_Code\LinkedInData\USAEmails.csv'
WITH (
FIELDTERMINATOR = ',',
ROWTERMINATOR = '\n',
FIRSTROW = 2
);
```
3. Clean the data **inside SQL Server**:
```sql
UPDATE dbo.USAEmails_Staging
SET Col1 = REPLACE(Col1, '"', ''),
Col2 = REPLACE(Col2, '"', ''),
Col3 = REPLACE(Col3, '"', '');
```
---
### ??? Summary
- `BULK INSERT` / `bcp` do **not** handle quoted delimiters correctly.
- Best approach:
- Preprocess the CSV (strip quotes)
- Use `BULK INSERT` after cleaning
- Alternative: Use `SSIS` or `OPENROWSET`
- As a fallback: Import to staging, clean with `UPDATE`
---
If you want, I can help you write:
??? a PowerShell script
??? a Python script
??? a full SQL workflow for the staging table
Would you like me to prepare one? Let me know! ????
Author: user
can i use python or powershell to import that file quickly intead?
Author: ChatGPT
Yes ??? you can **absolutely** use Python or PowerShell to import the quoted CSV file into SQL Server **quickly**, and they will handle the quoted delimiters better than `bcp` or `BULK INSERT`.
Here???s a solid starting point for both:
---
### ??? Python (with `pandas` + `pyodbc`)
This is one of the fastest, easiest ways:
```python
import pandas as pd
import pyodbc
# 1. Read CSV with pandas (handles quoted fields)
csv_file = r'C:\_Code\LinkedInData\USAEmails.csv'
df = pd.read_csv(csv_file)
# 2. Connect to SQL Server
conn_str = (
"DRIVER={ODBC Driver 17 for SQL Server};"
"SERVER=your_server_name;"
"DATABASE=your_database;"
"UID=your_username;"
"PWD=your_password"
)
conn = pyodbc.connect(conn_str)
cursor = conn.cursor()
# 3. Insert rows into target table
for index, row in df.iterrows():
cursor.execute("""
INSERT INTO dbo.YourTargetTable (FirstName, LastName, Email)
VALUES (?, ?, ?)
""", row['FirstName'], row['LastName'], row['Email'])
# 4. Commit and close
conn.commit()
cursor.close()
conn.close()
print("Import completed!")
```
??? Handles quoted CSV
??? No preprocessing needed
??? Easy to modify and extend
---
### ??? PowerShell (with `Invoke-Sqlcmd` or `System.Data.SqlClient`)
Here???s a **PowerShell** version:
```powershell
# 1. Read the CSV file
$csvPath = "C:\_Code\LinkedInData\USAEmails.csv"
$data = Import-Csv -Path $csvPath
# 2. Set SQL connection details
$server = "YourSqlServer"
$database = "YourDatabase"
$table = "YourTargetTable"
# 3. Insert each row
foreach ($row in $data) {
$query = @"
INSERT INTO dbo.$table (FirstName, LastName, Email)
VALUES (N'$($row.FirstName)', N'$($row.LastName)', N'$($row.Email)')
"@
Invoke-Sqlcmd -ServerInstance $server -Database $database -Query $query
}
Write-Host "Import completed!"
```
??? Handles quoted CSV
??? Requires `SqlServer` PowerShell module (`Install-Module SqlServer`)
??? Good for small/medium files (~ <100,000 rows); for large files, batching is better
---
### ??? Tips for fast performance
- **Python**
- Use `fast_executemany = True` on the cursor (`pyodbc` setting) to massively speed up inserts
- Use `SQLAlchemy` + `df.to_sql()` for bulk operations
- **PowerShell**
- Instead of row-by-row inserts, **batch into `DataTable`** and use `SqlBulkCopy` (super fast)
- Example: use `&#91;System.Data.SqlClient.SqlBulkCopy]` to load all rows at once
---
### ???? Want me to write you:
- A **Python script with bulk mode**?
- A **PowerShell script using `SqlBulkCopy`?**
Let me know which direction you prefer, and I???ll prepare a full working example! ????
Author: user
reading a large file into a dataframe will use a lot of resources, right?
Author: ChatGPT
??? Great point ??? yes, you are **absolutely right** to be cautious!
Reading a **large CSV** (especially with millions of rows or many columns) into a `pandas` DataFrame will **consume significant memory**, because:
- `pandas.read_csv()` loads the **entire file into memory**.
- It **infers datatypes** for every column, which adds some upfront cost.
- It stores the data in an **in-memory object**, which grows ~30???50% larger than raw CSV size due to Python object overhead.
For example:
| CSV File Size | Typical RAM Used by `pandas` |
|---------------|-----------------------------|
| 1 GB CSV | ~2???4 GB RAM in DataFrame |
| 5 GB CSV | ~10???20 GB RAM in DataFrame |
So yes ??? on a typical laptop or VM, you **could run out of RAM** or get into heavy swap.
---
### ???? Better options for large files
Here are **more scalable strategies** for Python and PowerShell:
---
#### ??? Python ??? Chunked read + batch insert
```python
import pandas as pd
import pyodbc
conn_str = "DRIVER={ODBC Driver 17 for SQL Server};SERVER=your_server;DATABASE=your_db;UID=your_user;PWD=your_pwd"
conn = pyodbc.connect(conn_str)
cursor = conn.cursor()
cursor.fast_executemany = True
chunksize = 10000 # Adjust to balance speed/memory
for chunk in pd.read_csv(r'C:\_Code\LinkedInData\USAEmails.csv', chunksize=chunksize):
data = &#91;tuple(row) for row in chunk.to_numpy()]
cursor.executemany("INSERT INTO dbo.YourTargetTable (FirstName, LastName, Email) VALUES (?, ?, ?)", data)
conn.commit()
cursor.close()
conn.close()
print("Import completed in chunks!")
```
??? Reads only 10,000 rows at a time
??? Fast batch inserts (`executemany`)
??? Avoids blowing up RAM
---
#### ??? PowerShell ??? Stream + SqlBulkCopy
```powershell
Add-Type -AssemblyName System.Data
$csvPath = "C:\_Code\LinkedInData\USAEmails.csv"
$server = "YourSqlServer"
$database = "YourDatabase"
$table = "YourTargetTable"
$connString = "Server=$server;Database=$database;Integrated Security=True;"
$connection = New-Object System.Data.SqlClient.SqlConnection $connString
$connection.Open()
$reader = &#91;System.IO.File]::OpenText($csvPath)
$header = $reader.ReadLine().Split(',')
# Create DataTable
$dataTable = New-Object System.Data.DataTable
$header | ForEach-Object { $dataTable.Columns.Add($_) }
$count = 0
while (($line = $reader.ReadLine()) -ne $null) {
$values = $line.Split(',') -replace '"', ''
$row = $dataTable.NewRow()
$header | ForEach-Object { $row&#91;$_] = $values&#91;$header.IndexOf($_)] }
$dataTable.Rows.Add($row)
$count++
# Batch every 10,000 rows
if ($count % 10000 -eq 0) {
$bulkCopy = New-Object Data.SqlClient.SqlBulkCopy $connection
$bulkCopy.DestinationTableName = $table
$bulkCopy.WriteToServer($dataTable)
$dataTable.Rows.Clear()
Write-Host "Imported $count rows..."
}
}
# Final batch
if ($dataTable.Rows.Count -gt 0) {
$bulkCopy = New-Object Data.SqlClient.SqlBulkCopy $connection
$bulkCopy.DestinationTableName = $table
$bulkCopy.WriteToServer($dataTable)
}
$connection.Close()
$reader.Close()
Write-Host "Final import completed!"
```
??? Streams file line by line
??? Uses **SqlBulkCopy** ??? very fast
??? Keeps memory low
---
### ???? Summary
| Tool | Small Files ??? | Large Files ??? | Best Approach |
|------------|---------------|---------------|------------------------|
| Python | `pandas.read_csv()` + loop | `pandas.read_csv(chunksize)` + batch insert | Use `chunksize` |
| PowerShell| `Import-Csv` + loop | Stream with `SqlBulkCopy` | Use `SqlBulkCopy` |
---
If you want, I can **prepare a ready-to-run script** for either Python or PowerShell ??? just tell me:
??? Which one you prefer
??? Approximate file size (# rows or GB)
Would you like me to write that for you? ????
Author: user
cursor.execute("""
INSERT INTO &#91;dbo].&#91;USAEmails] (&#91;FullName],&#91;Industry],&#91;JobTitle],&#91;SubRole],&#91;Emails],&#91;Mobile],&#91;PhoneNumbers],&#91;CompanyName],&#91;CompanyIndustry],&#91;CompanyWebsite],&#91;CompanySize],&#91;Location],&#91;Skills],&#91;FirstName],&#91;LastName],&#91;BirthYear],&#91;BirthDate],&#91;Gender],&#91;LinkedInUrl],&#91;FacebookUrl],&#91;TwitterUrl],&#91;Githu Url],&#91;Compan LinkedinUrl],&#91;CompanyFacebookUrl],&#91;CompanyTwitterUrl],&#91;CompanyLocationName],&#91;CompanyLocationStreetAddress],&#91;CompanyLocationAddressLine2],&#91;CompanyLocationPostalCode],&#91;LocationCountry],&#91;LocationContinent],&#91;LinkedinConnections],&#91;InferredSalary],&#91;YearsExperience],&#91;Countries],&#91;Interests])
VALUES (?, ?, ? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,?)
""", row&#91;'FullName'],row&#91;'Industry'],row&#91;'JobTitle'],row&#91;'SubRole'],row&#91;'Emails'],row&#91;'Mobile'],row&#91;'PhoneNumbers'],row&#91;'CompanyName'],row&#91;'CompanyIndustry'],row&#91;'CompanyWebsite'],row&#91;'CompanySize'],row&#91;'Location'],row&#91;'Skills'],row&#91;'FirstName'],row&#91;'LastName'],row&#91;'BirthYear'],row&#91;'BirthDate'],row&#91;'Gender'],row&#91;'LinkedInUrl'],row&#91;'FacebookUrl'],row&#91;'TwitterUrl'],row&#91;'Githu Url'],row&#91;'Compan LinkedinUrl'],row&#91;'CompanyFacebookUrl'],row&#91;'CompanyTwitterUrl'],row&#91;'CompanyLocationName'],row&#91;'CompanyLocationStreetAddress'],row&#91;'CompanyLocationAddressLine2'],row&#91;'CompanyLocationPostalCode'],row&#91;'LocationCountry'],row&#91;'LocationContinent'],row&#91;'LinkedinConnections'],row&#91;'InferredSalary'],row&#91;'YearsExperience'],row&#91;'Countries'],row&#91;'Interests'])
Author: ChatGPT
Thanks ??? that???s a solid starting point, but I see a couple of things to improve or be careful about to **avoid errors** and **optimize performance**.
Here???s an improved and ready-to-use Python pattern using **`executemany` + list of tuples** for batching, plus a few tips to avoid pitfalls:
---
### ??? Improved Python Pattern
```python
import pandas as pd
import pyodbc
# Connect to SQL Server
conn_str = (
"DRIVER={ODBC Driver 17 for SQL Server};"
"SERVER=your_server;"
"DATABASE=your_database;"
"UID=your_user;"
"PWD=your_password"
)
conn = pyodbc.connect(conn_str)
cursor = conn.cursor()
cursor.fast_executemany = True # This speeds up executemany massively
# Read CSV in chunks
chunksize = 5000 # adjust as needed
csv_file = r'C:\_Code\LinkedInData\USAEmails.csv'
for chunk in pd.read_csv(csv_file, chunksize=chunksize):
# Build list of tuples for executemany
data = &#91;
tuple(
row&#91;col] if col in row and pd.notnull(row&#91;col]) else None
for col in &#91;
'FullName', 'Industry', 'JobTitle', 'SubRole', 'Emails', 'Mobile',
'PhoneNumbers', 'CompanyName', 'CompanyIndustry', 'CompanyWebsite',
'CompanySize', 'Location', 'Skills', 'FirstName', 'LastName',
'BirthYear', 'BirthDate', 'Gender', 'LinkedInUrl', 'FacebookUrl',
'TwitterUrl', 'Githu Url', 'Compan LinkedinUrl', 'CompanyFacebookUrl',
'CompanyTwitterUrl', 'CompanyLocationName', 'CompanyLocationStreetAddress',
'CompanyLocationAddressLine2', 'CompanyLocationPostalCode', 'LocationCountry',
'LocationContinent', 'LinkedinConnections', 'InferredSalary', 'YearsExperience',
'Countries', 'Interests'
]
)
for index, row in chunk.iterrows()
]
# Prepare INSERT statement
sql = """
INSERT INTO &#91;dbo].&#91;USAEmails] (
&#91;FullName],&#91;Industry],&#91;JobTitle],&#91;SubRole],&#91;Emails],&#91;Mobile],&#91;PhoneNumbers],&#91;CompanyName],
&#91;CompanyIndustry],&#91;CompanyWebsite],&#91;CompanySize],&#91;Location],&#91;Skills],&#91;FirstName],&#91;LastName],
&#91;BirthYear],&#91;BirthDate],&#91;Gender],&#91;LinkedInUrl],&#91;FacebookUrl],&#91;TwitterUrl],&#91;Githu Url],
&#91;Compan LinkedinUrl],&#91;CompanyFacebookUrl],&#91;CompanyTwitterUrl],&#91;CompanyLocationName],
&#91;CompanyLocationStreetAddress],&#91;CompanyLocationAddressLine2],&#91;CompanyLocationPostalCode],
&#91;LocationCountry],&#91;LocationContinent],&#91;LinkedinConnections],&#91;InferredSalary],&#91;YearsExperience],
&#91;Countries],&#91;Interests]
) VALUES (
?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?
)
"""
# Bulk insert the chunk
cursor.executemany(sql, data)
conn.commit()
print(f"Inserted chunk of {len(data)} rows")
# Cleanup
cursor.close()
conn.close()
print("All data imported successfully!")
```
---
### ???? Key Improvements & Notes
??? Uses `chunksize` to avoid loading the entire CSV into memory.
??? Uses `executemany()` + `fast_executemany = True` ??? **100x faster** on large batches.
??? Handles **NULLs** properly (`pd.notnull(row&#91;col]) else None`).
??? Avoids hardcoding positional parameters in the loop (it builds tuples dynamically).
??? Outputs progress per chunk.
---
### ???? Recommendations for large files
- Start with `chunksize=5000` and increase to `10000` if memory allows.
- Create a **staging table** if you want to load raw data first, then clean inside SQL.
- Add `try-except` blocks if you need robust error handling per chunk.
---
If you like, I can also send you:
??? a version with full `try-except` logging,
??? a script to **pre-check** the table schema vs CSV header, or
??? a PowerShell version using `SqlBulkCopy`.
Want me to prep one of those for you? Let me know! ????